CDM-760 Advanced High-Speed Trunking Modem

Overview

The CDM-760 Advanced High-Speed Trunking Modem builds on our award-winning family of high-speed, ultra efficient trunking modems. The CDM-760 further enhances our offerings to include ultra wide band symbol rates, near theoretical performance with minimal implementation loss, our proprietary DVB-S2 Efficiency Boost technology, Super Jumbo Frame (SJF) Ethernet support and many other value-added features.

The CDM-760 Advanced High-Speed Trunking Modem was designed to be the most efficient, highest throughput, point-to-point trunking modem available. The CDM-760 accommodates the most demanding Internet Service Provider (ISP) and telco backhaul links by offering users the most advanced combination of space segment saving capabilities while minimizing the need for unnecessary overhead.

Typical Users

- Mobile Operators
- Telecom Operators
- ISPs
- Government & Military

Common Applications

- IP Trunking
- G.703 Trunking
- High-Speed Content Delivery
- Disaster Recovery & Emergency Communications

The CDM-760 offers an expansive range of symbol rates (100 ksps to 150 Msps) and data rates (100 kbps to 314 Mbps). Run in a duplex setting, this is a staggering 628 Mbps or 300 Msps. The onboard Ethernet interfaces support Super Jumbo Frames from 64 Bytes to >10,000 Bytes and will process Ethernet frames at a blazing > 1.2 Million packets / second. With the optional Packet Processor card installed the CDM-760 can support > 350,000 packets per second while performing simultaneous Header Compression and QoS.

Expanding on the efficient DVB-S2 EN 302 307 standard, the CDM-760 again furthers spectral efficiency with its DVB-S2-EB1& EB2 (Efficiency Boost) waveforms. DVB-S2 is widely accepted as the most spectrally efficient standards-based waveforms. With our Efficiency Boost technology (DVB-S2-EB1& EB2), you can achieve a 10% – 35% increase in efficiency over the DVB-S2 standard without an increase in power or occupied bandwidth. The CDM-760 accomplishes this task by virtually doubling the number of available MODCODs, introducing three new ROF figures (5%, 10% and 15%) and minimizing implementation loss to near theoretical operation. The CDM-760 is software upgradeable to support future standards including DVB-S2 Efficiency Boost and DVB-S2-X.

Implementing Adaptive Coding and Modulation (ACM) operation allows link margin to be converted to user capacity during non-faded conditions by taking advantage of the actual signal to noise ratio rather than calculated worst case signal to noise.

By using the best encapsulation methods, the CDM-760 further increases throughput by using minimal overhead. In G.703 synchronous mode, users can implement monitor and control over the satellite with no additional overhead. When using Ethernet bridge mode, less than 1% overhead is used for encapsulation.

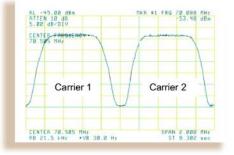
The optional K4 GZIP lossless compression engine performs real-time compression of Ethernet traffic and is capable of running at the full rate of the modem. Offering 52% to 59% compression rates at random packet sizes using the Calgary Corpos bitstream, K4 GZIP can greatly increase the throughput of the satellite link, or reduce required bandwidth.

DVB-CID ETSI TS 103 129 is the ETSI standard for combating satellite interference and is largely based on Comtech EF Data's awardwinning MetaCarrier® technology. MetaCarrier technology embeds and detects a small message and unique ID within a video or data satellite carrier. This embedded message and ID significantly reduce the time to identify and clear interference sources. The MetaCarrier is embedded using spread spectrum techniques within the carrier itself without adding appreciable noise or power to the host carrier.

Additionally, the CDM-760 leverages our powerful DoubleTalk[®] Carrier-in-Carrier[®] "Adaptive Cancellation" technology. With the ability to overlay TX and RX carriers, Carrier-in-Carrier enables the operator to establish the perfect balance between bandwidth and power, enabling the best possible use of the satellite resource and reducing operating expenses (OPEX).

These technologies alone offer enormous savings to the ISP and telco operator. When used in combination, however, the savings are astronomical. The innovative high-performance architecture of the CDM-760 allows efficient networking and transport over satellite links while supporting a wide range of applications and network topologies.

CDM-760 Back Panel


Features

- Symbol Rate: 0.1 to 150 Msps
- Data Rate: 0.1 to 314 Mbps
- DVB-S2 ETSI EN 302 307 compliant
- DVB-S2-EB1&EB2 Efficiency Boost technology
- DoubleTalk Carrier-in-Carrier bandwidth compression
- ACM and CCM
- Embedded MetaCarrier DVB-CID ETSI TS 103 129
- GSE low overhead <1% encapsulation
- K4 GZIP lossless compression
- Automatic Uplink Power Control (AUPC)
- Super Jumbo Frame 64 10,240 Byte Support (In Non Packet Processor Mode)
- Packet Processor with > 190,000 PPS simplex and > 350,000 PPS duplex
- 9,000 Byte Jumbo Frame (In Packet Processor Mode)
- Layer 3 Routed Mode operation with up to 256 static routes (>105,000 PPS simplex, >150,000 PPS duplex)
- Modulation: QPSK, 8PSK, 16APSK, 32APSK
- Dual IF: 70/140 MHz, L-Band and L-Band monitor (standard)
- Data Interfaces
 - 2 Gigabit 10/100/1000Base-T interfaces (standard)
 - 1 Optical Gigabit interface (optional)
 - Processes > 600,000 pps simplex, 1.2M pps duplex
 - PIIC optional interface cards
 - G.703 E3/T3/STS-1 (34.368, 44.736, 51.84 Mbps)
 - STM-1 Copper SDH (155.52 Mbps)
 - OC-3 SONET single mode or multi-mode 1300 nm (155.52 Mbps)
- Multistream capable (Multi-Interface mux)
- Supports Medium Earth Orbit (MEO) mode operation
- Management: HTTP, SNMP, Telnet, RS-232/485
- In-band (over satellite) M&C control
- 1:1 and 1:N redundancy switching available

Doubletalk Carrier-in-Carrier

DoubleTalk Carrier-in-Carrier, based on patented "Adaptive Cancellation" technology, allows transmit and receive carriers of a duplex link to share the same transponder space.

Figure 1 shows the typical full duplex satellite link, where the two carriers are adjacent to each other. Figure 2 shows the typical DoubleTalk Carrier-in-Carrier operation, where the two carriers are overlapping, thus sharing the same spectrum.

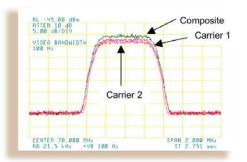


Figure 1: Traditional Full Duplex Link

Figure 2: Duplex Link with DoubleTalk Carrier-in-Carrier

When observed on a spectrum analyzer, only the Composite is visible. Carrier 1 and Carrier 2 are shown in Figure 2 for reference only.

Carrier-in-Carrier[®] is a Registered Trademark of Comtech EF Data DoubleTalk[®] is a Registered Trademark of Raytheon Applied Signal Technology

Packet Processor

The optional High-Speed Packet Processor enables efficient IP networking and transport over satellite with a processing engine capable of handling >190,000 PPS simplex and >350,000 PPS duplex. The packet processor performs header compression and Quality of Service (QoS) ensuring the highest quality of service with minimal jitter and latency for real-time traffic, priority treatment of mission critical applications and maximum bandwidth efficiency.

The Packet processor functions in Managed Switch Mode of operating as a layer 2 switch with VLAN and MPLS support.

Header Compression

The Packet Processor incorporates industry-leading header compression for Ethernet and IP traffic. In managed switch mode, header compression can reduce the 54 byte Ethernet/IP/UDP/RTP header to as little as 1 byte. For applications such as VoIP, header compression can provide bandwidth savings exceeding 65%. E.g. the 8 kbps G.729 voice codec requires 31.2 kbps once encapsulated into an Ethernet frame with IP/UDP/RTP. With header compression, the same voice call needs about 9 kbps – a saving of almost 70%. And, bandwidth requirements for typical Web/HTTP traffic can be reduced by 10% or more with TCP/IP header compression.

Supported Layer 2, 2+ Headers	Supported Layer 3 Headers
Ethernet	IP
Ethernet + VLAN	TCP
Ethernet + VLAN + VLAN	UDP
Ethernet + MPLS	RTP (Codec Independent)
Ethernet + MPLS + MPLS	
Ethernet + VLAN + MPLS	
Ethernet + VLAN + MPLS + MPLS	
Ethernet + VLAN + VLAN + MPLS	
Ethernet + VLAN + VLAN + MPLS + MPLS	

Traffic Shaping Functionality (QoS)

Traffic Shaping Functionality (QoS) – The high-speed packet processor functions in a layer 2 mode of operation while performing the three processes that comprise traffic shaping: Classification, Prioritization and Drain.

- Classification of traffic is the basic mechanism by which a packet or frame can be sorted and associated with a particular group or priority. The more flexible a classification engine is, the more likely the high value services can be protected.
- Prioritization of traffic is a method of assigning various value levels to a particular packet or frame. Prioritization ensures that the packets / frames are "ordered" in such a manner that the highest level of protection is provided to the most valuable traffic.
- Drain Once the packets or frames are classified and prioritized, it needs to be determined how to drain the traffic. Does your
 network require you to pass all high level traffic in a strict priority manner such that lower priority traffic could be "starved" in times
 of congestion? Or, can determinations be made about the maximum and minimum levels of service you can accept on a per
 classification basis? The CDM-760 packet processor gives the operator or service provider many options to choose from.
 - DiffServ Industry-standard method of providing QoS enabling seamless co-existence in networks that implement DiffServ
 - Max/Priority Provides traffic prioritization with the ability to limit maximum traffic per priority class
 - Min/Max Provides a Committed Information Rate (CIR) to each user defined class of traffic with the ability to allow a higher burstable rate depending on availability
 - Max/Priority with Weighting Mode
 - Weights are applied all queues that have not reached their max BW limit
 - Once the max BW is reached, the scheduler will not drain any more data irrespective of its weights
 - Min/MAX with Weighting Mode
 - First serves the minimum BW
 - o Once the minimum BW is met, the weights are applied until the Max BW is met
 - o Once the max BW is met, the scheduler will not drain any more data

Classification	Prioritization	Drain		
 DiffServ MPLS VLAN Protocol Source IP Address Destination IP Address Source Port Destination Port 	 Up to 8 different levels of prioritization Weighting can be enabled per level 	 DiffServ Max / Priority Min / Max Max / Priority with Weighting Min / Max with Weighting 		

Layer 3 Routed Mode

In some cases it may be desirable to function in a layer 3 routed mode of operation. The packet processor can be configured to run as a layer 3 device with static routing. The packet processor can have up to 256 static routes based on destination IP address mask. The packet processor in layer 3 routed mode can support >105,000 PPS simplex or >150,000 PPS duplex.

Specifications

Symbol Rate Range	DVB-S2: 100 Ksps to 150 Msps in 1 sps steps (modulation dependent) DVB-S2-EB1&EB2: 100 Ksps to 150 Msps in 1 sps steps (modulation dependent)
Modulation Type	DVB-S2: ETSI EN 302 307 compliant DVB-S2-EB1&EB2: DVB-S2 with Efficiency Boost technology
FECFrame	Normal (64,800 bits) or Short (16,200 bits)
Pilots	On or off
Alpha (Rolloff)	DVB Compliant: 20%, 25% or 35% Comtech Efficiency Boost DVB-S2-EB1&EB2: 5%, 10%, 15%, 20%, 25%, 35%
Management	Front panel keypad / display RS-232 /485, or 10/100Base-T with SNMP, Telnet, HTTP
Reflash	Ethernet management port
Frequency Stability	Internal, stability ± 0.06 ppm
External Reference	Internal, 1, 2, 5 or 10 MHz for IF and data,
Input / Output (BNC	internally phase locked.
Female)	Output: off or internal 10 MHz
Form C	Modulator, demodulator and unit fault
Spectral Sense	Normal and inverted
Configuration Retention	Non-volatile memory; Returns upon power up

Options

Options	
Туре	Option
FAST	DVB-S2, DVB-S2-EB1&EB2 TX / RX: 8PSK,
	16APSK, 32APSK
FAST	Symbol rate options
FAST & Hardware	Carrier-in-Carrier options
FAST & Hardware	Packet Processor (Can not be installed with any
	PIIC data interface cards)
FAST & Hardware	K4 GZIP lossless compression
FAST	ACM point to point client / controller
FAST	Automatic Uplink Power Control (AUPC)
FAST	Optical Gigbit Ethernet enable
Hardware	PIIC optional interface cards
	G.703 E3/T3/STS-1 (34.368, 44.736, 51.84 Mbps)
	STM-1 Copper SDH (155.52 Mbps)
	OC-3 SONET single mode or multi-mode 1300 nm
	(155.52 Mbps)
Hardware	Rack slides

Modulator (Dual IF)

70/140 MHz	50 to 180 MHz in 100 Hz steps
Impedance / Connector	75 Ω, BNC female. Return loss ≥ 18 dB
Output Power	0 to -25 dBm, 0.1 dB steps (70/140 MHz)
Power Accuracy	± 0.5 dB of nominal at 25°C; Within
	± 0.5 dB from 25°C value at same frequency
L-Band	950 to 2150 MHz in 100 Hz steps
Impedance / Connector	50 Ω, Type N female. Return loss ≥ 15 dB
Output Power	0 to -40 dBm, 0.1 dB steps
Power Accuracy	± 0.5 dB of nominal at 25°C
	± 0.5 dB from 25°C value at same frequency
L-Band Monitor	Same as L-Band or 900 + 70/140 MHz IF at
	-27 dBm ± 3 dB
Harmonics and Spurs	< 60 dBc/4kHz, modulated carrier; Excludes
	spectral mask area
External TX Carrier Off	TTL low signal
Quadrature Phase Error and Amplitude Imbalance	Sideband 35 dB below unmodulated carrier

Demodulator (Dual IF)

70/140 MHz	50 to 180 MHz in 100 Hz steps
Impedance / Connector	75 Ω, BNC female. Return loss 15 dB min.
Input Power	Desired carrier:
	Min. = $-58 + 10 \text{Log} (\text{SR}_{\text{MSPS}}) \text{ dBm}$
	Max. = -23 + 10Log (SR _{MSPS}) dBm
	or +10 dBm whichever is less.
Max. Composite Power	+20 dBm or = 14 + 10Log (180 / SR _{MSPS}) dBc
	(whichever is less)
L-Band	950 to 2150 in 100 Hz steps
L-Band Impedance / Connector	950 to 2150 in 100 Hz steps 50 Ω, Type N female. Return loss 10 dB min.
	•
Impedance / Connector	50 Ω, Type N female. Return loss 10 dB min.
Impedance / Connector	50 Ω , Type N female. Return loss 10 dB min. Desired carrier:
Impedance / Connector	50 Ω, Type N female. Return loss 10 dB min. Desired carrier: Min. = -70 + 10Log (SR _{MSPS})dBm
Impedance / Connector	50 Ω, Type N female. Return loss 10 dB min. Desired carrier: Min. = -70 + 10Log (SR _{MSPS})dBm Max. = -20 + 10Log (SR _{MSPS}) dBm

Doubletalk Carrier-In-Carrier

Symbol Rate Range	1 Msps to 63 Msps in 1sps steps
Delay Range	0 to 400 ms
	(factory default 230 – 290 ms)
CnC Ratio	+7 dB to -7 dB interferer to desired
Es/No degradation (dB)	QPSK: 0.3 dB
measured at 0.0 dB	8PSK: 0.3 dB
CnC Ratio	16APSK: 0.4 dB
	32APSK: 0.6 dB
Symbol Rate Ratio	Max 3:1 TX/RX or RX/TX
Satellite Configuration	Transmit station sees own carrier. Non- processing satellite.

Base Unit Connectors

Alarm Connector	Form C: TX, RX and unit faults
(DB-15 Male)	External TX carrier off
(DB-15 Male)	
	IQ test point
Unit Management	DB-9 male with RS-232 and RS-485 2-wire / 4-wire
	RJ-45 Ethernet (maximum Ethernet packet size
	1536 bytes including Ethernet header & CRC)
TX & RX IF	BNC female (70/140 MHz)
Connectors	Type-N female (L-Band)
L-Band Monitor	SMA female
Ethernet Data	2 x RJ-45 10/100/1000Base-T Ethernet
Interfaces on main	1 x Optical Gibabit Ethernet (optional)
modem (Non-	Note: All Data GigE interfaces support super
Packet Processor)	jumbo frames with a maximum Ethernet frame size
	of 10,240 bytes including Ethernet header & CRC
Packet Processor	4 x RJ-45 10/100/1000Base-T Ethernet interface
Interface	(User Traffic), 1 x RJ11 (CLI serial), 1 x
Interface	10/100/1000Base-T Ethernet interface
	(Management) Note: Cannot use any PIIC
	interfaces cards if Packet Processor is installed.
Test Functions	
Data Test Pattern	2^10-1, 2^15-1, 2^23-1 compatible with BERT on TX
	data on applicable interfaces

Data Test Pattern	2^10-1, 2^15-1, 2^23-1 compatible with BERT on TX data on applicable interfaces
CW	Modulation disabled and CW signal is transmitted
SSB Carrier	Provides suppressed carrier and suppressed sideband
Loopback	Full-duplex only

Specifications – continued

Environmental and Physical

Temperature	
Operating	0 to 50°C (32 to 122°F)
Storage	-40 to 70°C (-40 to 158°F)
Humidity	95% maximum, non-condensing
Power Supply Input	100-240 VAC 50/60 Hz
	43-60 VDC (48 VDC option)
Power Consumption	
120 VAC at 60 Hz	88 W, 93 VA typical
230 VAC at 50 Hz	88 W, 133 VA typical
48 VDC	85 W typical
Dimensions (1RU)	1.75" x 19" x 18.65"
(height x width x depth)	(48 x 47.4 x 4.4 cm)
Weight	15 lbs (6.8 kg)
AC Receptacles	Includes restraint for standard IEC-320 inlet
Agency Compliance	CE Mark and FCC part 15

Accessories

Туре	Option
1:1 Modem Redundancy	CRS-170A (L-Band), CRS-180 (70/140 MHz) (no Packet Processor)
1:N Modem Redundancy	CRS-500 70/140 MHz or L-Band (Only for use with 10/100/1000Base-T or G.703 T3/E3/STS-1 interfaces) (no Packet Processor)

DVB-52, Nor	таї Віоск, Рі	lot ON, QEF (P				<i>"</i>		
		Min SR	Max SR	Min DR	Max DR	Spec Eff	QEF	QEF
MOD	FEC	(Msps)	(Msps)	(Mbps)	(Mbps)	(Bits / Hz)	Eb/No	Es/No
QPSK	1/2	0.1	150	0.10	144.80	0.97	1.5	1.3
QPSK	3/5	0.1	150	0.12	174.00	1.16	1.9	2.5
QPSK	2/3	0.1	150	0.13	193.70	1.29	2.2	3.3
QPSK	3/4	0.1	150	0.15	217.80	1.45	2.7	4.3
QPSK	4/5	0.1	150	0.15	232.40	1.55	3.0	4.9
QPSK	5/6	0.1	150	0.16	242.30	1.62	3.3	5.4
QPSK	8/9	0.1	150	0.17	258.60	1.72	4.0	6.4
QPSK	9/10	0.1	150	0.17	261.90	1.75	4.2	6.6
8PSK	3/5	0.1	120	0.17	208.80	1.74	3.7	6.1
8PSK	2/3	0.1	120	0.19	232.30	1.94	3.6	6.5
8PSK	3/4	0.1	120	0.22	261.40	2.18	4.8	8.2
8PSK	5/6	0.1	120	0.24	290.60	2.42	5.8	9.6
8PSK	8/9	0.1	120	0.26	310.30	2.59	6.9	11.0
8PSK	9/10	0.1	120	0.26	314.20	2.62	7.1	11.3
16APSK	2/3	0.1	90	0.26	231.80	2.58	5.4	9.5
16APSK	3/4	0.1	90	0.29	260.60	2.90	6.0	10.6
16APSK	4/5	0.1	90	0.31	278.10	3.09	6.5	11.4
16APSK	5/6	0.1	90	0.32	290.00	3.22	6.9	12.0
16APSK	8/9	0.1	90	0.34	309.60	3.44	7.8	13.2
16APSK	9/10	0.1	90	0.35	313.50	3.48	8.1	13.5
32APSK	3/4	0.1	72	0.36	260.90	3.62	7.6	13.2
32APSK	4/5	0.1	72	0.39	278.40	3.87	8.1	14.0
32APSK	5/6	0.1	72	0.40	290.20	4.03	8.7	14.8
32APSK	8/9	0.1	72	0.43	309.80	4.30	9.9	16.2
32APSK	9/10	0.1	72	0.44	313.70	4.36	10.1	16.5

Specifications – continued

	550	Min SR	Max SR	Min DR	Max DR	Spec Eff	QEF Eb/No	QEF Es/No
MOD	FEC	(Msps)	(Msps)	(Mbps)	(Mbps)	(Bits / Hz)	(*=EB2)	(*=EB2)
QPSK	1/2	0.1	150	0.10	144.75	0.97	1.5	1.3
QPSK	8/15	0.1	150	0.10	154.50	1.03	1.6	1.7
QPSK	17/30	0.1	150	0.11	164.25	1.10	1.7	2.1
QPSK	3/5	0.1	150	0.12	174.00	1.16	1.9	2.5
QPSK	19/30	0.1	150	0.12	183.75	1.23	1.9	2.8
QPSK	2/3	0.1	150	0.13	193.65	1.29	2.2	3.3
QPSK	127/180	0.1	150	0.14	204.90	1.37	2.4	3.8
QPSK	3/4	0.1	150	0.15	217.80	1.45	2.7	4.3
QPSK	4/5	0.1	150	0.15	232.35	1.55	3.0	4.9
QPSK	5/6	0.1	150	0.16	242.25	1.62	3.3	5.4
QPSK	31/36	0.1	150	0.17	250.20	1.67	3.7	5.9
QPSK	8/9	0.1	150	0.17	258.60	1.72	4.0	6.4
QPSK	9/10	0.1	150	0.17	261.90	1.75	4.2	6.6
8PSK	17/30	0.1	120	0.16	197.04	1.64	3.7	5.9
8PSK	3/5	0.1	120	0.17	208.80	1.74	3.7	6.1
8PSK	19/30	0.1	120	0.18	220.44	1.84	3.9	6.5
8PSK	2/3	0.1	120	0.19	232.32	1.94	4.0	6.9
8PSK	127/180	0.1	120	0.20	245.76	2.05	4.7	7.8
8PSK	3/4	0.1	120	0.22	261.36	2.18	4.8	8.2
8PSK	4/5	0.1	120	0.23	278.88	2.32	5.3	9.0
8PSK	5/6	0.1	120	0.24	290.64	2.42	5.8	9.6
8PSK	31/36	0.1	120	0.25	300.24	2.50	6.3	10.3
8PSK	8/9	0.1	120	0.26	310.32	2.59	6.9	11.0
8PSK	9/10	0.1	120	0.26	314.16	2.62	7.1	11.3
16APSK	19/30	0.1	90	0.24	219.87	2.44	5.3 / 5*	9.2 / 8.9*
16APSK	2/3	0.1	90	0.26	231.75	2.58	5.4 / 5.1*	9.5 / 9.2*
16APSK	127/180	0.1	90	0.27	245.16	2.72	5.6 / 5.4*	10 / 9.8*
16APSK	3/4	0.1	90	0.29	260.64	2.90	6 / 5.9*	10.6 / 10.5
16APSK	4/5	0.1	90	0.31	278.10	3.09	6.5 / 6.3*	11.4 / 11.2
16APSK	5/6	0.1	90	0.32	289.98	3.22	6.9 / 6.7*	12 / 11.8*
16APSK	31/36	0.1	90	0.33	299.52	3.33	7.6 / 7.2*	12.8 / 12.4
16APSK	8/9	0.1	90	0.34	309.60	3.44	7.8 / 7.6*	13.2 / 13*
16APSK	9/10	0.1	90	0.35	313.47	3.48	8.1 / 7.9*	13.5 / 13.3
32APSK	127/180	0.1	72	0.34	245.30	3.41	7.2 / 7*	12.5 / 12.3
32APSK	3/4	0.1	72	0.36	260.86	3.62	7.5 / 7.3*	13.1 / 12.9
32APSK	4/5	0.1	72	0.39	278.35	3.87	8.1 / 8*	14 / 13.9*
32APSK	5/6	0.1	72	0.39	290.23	4.03	8.7 / 8.4*	14.8 / 14.5
32APSK	31/36	0.1	72	0.40	290.23	4.03	9.2 / 8.9*	15.4 / 15.1
32APSK 32APSK	8/9	0.1	72	0.42		4.10	9.2 / 8.9	
32APSK 32APSK	9/10	0.1	72	0.43	309.82			16.2 / 15.7
					313.70	4.36	10.1 / 9.8*	16.5 / 16.2
64APSK *	4/5	0.1	54	0.46	250.02	4.63	NA / 10.4*	NA / 17.1*
64APSK *	5/6	0.1	54	0.48	260.82	4.83	NA / 11.1*	NA / 17.9*
64APSK *	31/36	0.1	54	0.50	268.92	4.98	NA / 11.5*	NA / 18.5*
64APSK *	8/9	0.1	54	0.52	278.10	5.15	NA / 12.3*	NA / 19.4*
64APSK *	9/10	0.1	54	0.52	281.88	5.22	NA / 12.7*	NA / 19.9'

2114 West 7th Street, Tempe, Arizona 85281 USA

 Control EF Data
 See all of Contech EF Data's Patents and Patents Pending at http://patents.comtechefdata.com

 Contech EF Data reserves the right to change specifications of products described in this document at any time without notice and without obligation to notify any person of such changes. Information in this document may differ from that published in other Contech EF Data documents. Refer to the website or contact Customer Service for the latest released product information as-cdm760.docx

 © 2015 Contech EF Data
 ds-cdm760.docx
 1/9/2015